LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - APRIL 2023
PMT 3502 - FUZZY SETS AND APPLICATIONS

Date: 04-05-2023
Time: 09:00 AM - 12:00 NOON \square

Answer ALL Questions

1. a) Define Generalized hamming distance and relative Euclidean with an example.

OR
b) If the fuzzy subsets A and B represents real numbers very near to 5 and 10 respectively, find the fuzzy subset of real numbers very near to 5 and 10 .
c) Find ${\underset{\sim}{2}}_{2} \circ{\underset{\sim}{1}}$ using max-min composition.

${\underset{\sim}{2}}_{1}$	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}
x_{1}	0.1	0.2	0	1	0.7
x_{2}	0.3	0.5	0	0.2	1
x_{3}	0.8	0	1	0.4	0.3

OR
d) Let R_{1} and R_{2} be two fuzzy relations.

R_{1}	Y_{1}	Y_{2}	Y_{3}	Y_{4}
X_{1}	0.3	0.2	1	0
X_{2}	0.8	1	0	0.2
X_{3}	0.5	0	0.4	0

R_{2}	Y_{1}	Y_{2}	Y_{3}	Y_{4}
X_{1}	0.3	0	0.7	0
X_{2}	0.1	0.8	1	1
X_{3}	0.6	0.9	0.3	0.2

Find (i) union (ii) intersection (iii) algebraic product (iv) distinctive sum for R_{1} and R_{2}
(8)
e) Let $p_{i}, m_{i}, n_{i} \in R^{+}, i=1,2 \ldots k$, then prove that $\sqrt{\sum_{i=1}^{k} p_{i}^{2}} \leq \sqrt{\sum_{i=1}^{k} m_{i}^{2}}+\sqrt{\sum_{i=1}^{k} n_{i}^{2}}$, where $p_{i} \leq m_{i}+n_{i}, i=1,2 \ldots k$.
2. a) Explain in detail fuzzy subset induced by a mapping.

OR
b) Explain global projection with an example.
c) Find $A \oplus B$ for

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
A	0.7	0.2	0	0.6	0.5	1	0
B	0.2	0	0	0.6	0.8	0.4	1

d) State and prove the decomposition theorem for fuzzy subsets.

OR
e) Using suitable example, show that Max-Min composition is associative.
f) Define algebraic product and algebraic sum of two fuzzy relations with an example.
3. a) Consider the relation $\underset{\sim}{R}$ given with the resemblance function $\mu_{\underset{\sim}{R}}(x, y)=\frac{1}{1+|x-y|}$, for all $x, y \in N$. Is this relation a resemblance relation?.

OR
b) Let $\underset{\sim}{R} \subset E \times E$ be a similitude relation. Let x, y, z be three elements E. Let
$c={\underset{\sim}{R}}_{\mu_{R}}(x, z)={\underset{\sim}{R}}_{\mu_{R}}(z, x), a=\underset{\sim}{\mu_{R}}(x, y)={\underset{\sim}{R}}_{\mu_{R}}(y, x)$ and $b={\underset{\sim}{R}}_{\mu_{R}}(y, z)=\mu_{\sim}^{\mu}(z, y)$. Then $c \geq a=$
b or $a \geq b=c$ or $b \geq c=a$.
c) Explain the following fuzzy relation of (i) preorder (ii) semi-preorder (iii) perfect anti- symmetric and (iv) similitude, each with an example.
d) Prove that $\underset{\sim}{\hat{\hat{R}}} \subset \underset{\sim}{\dot{\hat{R}}}$, where $\underset{\sim}{R}$ is an resemblance relation.

OR
e) If $\underset{\sim}{R}$ is a preorder relation then show that $\underset{\sim}{R}={\underset{\sim}{r}}^{2}=R_{\sim}^{3}=\cdots=R_{\sim}^{k}=\cdots=\hat{\sim}$
f) Define fuzzy equivalence relation and verify the properties with an example.
4. a) Explain the process of fuzzy c- mean algorithm.

OR
b) Explain sensing problem in pattern recognition.
c) Describe a few areas where computer-based pattern recognition system are applied.
d) Give a detailed description of fuzzy image processing.

OR
e) Explain fuzzy membership roaster method with an example.
f) Explain how fuzzy clustering methods are based on fuzzy equivalence with an example.
5. a) Explain how one's face can be verified using fuzzy tools.

OR
b) In any field of application, explain the concept of fuzzy degree of measure applied with an example.
c) Explain in detail fuzzy application in the field of medicine.

OR

d) Explain in detail with suitable case studies, fuzzy applications in the field of Robotic.

